What is AI? Learn about Artificial Intelligence

Artificial Intelligence (AI) refers to systems or machines that mimic human intelligence to perform tasks and can iteratively improve themselves based on the information they collect. AI manifests in a number of forms. A few examples are:

  • Chatbots use AI to understand customer problems faster and provide more efficient answers
  • Intelligent assistants use AI to parse critical information from large free-text datasets to improve scheduling
  • Recommendation engines can provide automated recommendations for TV shows based on users’ viewing habits

AI is much more about the process and the capability for superpowered thinking and data analysis than it is about any particular format or function. Although AI brings up images of high-functioning, human-like robots taking over the world, AI isn’t intended to replace humans. It’s intended to significantly enhance human capabilities and contributions. That makes it a very valuable business asset.

Artificial intelligence terms

AI has become a catchall term for applications that perform complex tasks that once required human input such as communicating with customers online or playing chess. The term is often used interchangeably with its subfields, which include machine learning and deep learning. There are differences, however. For example, machine learning is focused on building systems that learn or improve their performance based on the data they consume. It’s important to note that although all machine learning is AI, not all AI is machine learning.

To get the full value from AI, many companies are making significant investments in data science teams. Data science, an interdisciplinary field that uses scientific and other methods to extract value from data, combines skills from fields such as statistics and computer science with business knowledge to analyze data collected from multiple sources.

What’s driving AI adoption?

Three factors are driving the development of AI across industries:

  • Affordable, high-performance computing capability is readily available. The abundance of commodity compute power in the cloud enables easy access to affordable, high-performance computing power. Before this development, the only computing environments available for AI were non-cloud-based and cost prohibitive.
  • Large volumes of data are available for training. AI needs to be trained on lots of data to make the right predictions. The emergence of different tools for labeling data, plus the ease and affordability with which organizations can store and process both structured and unstructured data, is enabling more organizations to build and train AI algorithms.
  • Applied AI delivers a competitive advantage. Enterprises are increasingly recognizing the competitive advantage of applying AI insights to business objectives and are making it a businesswide priority. For example, targeted recommendations provided by AI can help businesses make better decisions faster. Many of the features and capabilities of AI can lead to lower costs, reduced risks, faster time to market, and much more.